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1. Introduction

A frequently oceurring situation in selentific work
iz onc in which the relationship between two quan-
tities is examined for a series of valnes of a third
quantity. For example, in the thermodynamie
stoudies of gased the pressure-volume relationship
may be examined at vatious temperaturcs, The
vesuits of such sxperiments are often presented in
termie of & one-parameter femily of eurves. Alter-
natively, one may describe the problem a= the fitting
of & surface in & space of threa dimensions.

An analvais of 2 set of data {or earves) of this type
followa one of two possible linea: either a model is
postulated on the basis of ghysicochemical hypoth-
egan, in which case the main purpose of the analyeis
is to verify the adequacy of I.Eia model, and possibly
to catimate certain constants securring in the model;
or thers exdsts no pertinent, theory, in which caze the
problem conaists in finding a satiafactory empirical
representation of the datn. Thus, in our example,
one might postulata Van der Waals equation:

(v+:) V=—5)=RT m

where p, V¥, and T represent pressure, voluma, and
temperature, R, the gas comnstant, and ¢ and b two
constantz to be inferred from the data. The postu-
lation of thia equation would put the problem in
the first category. On the other hand, tha experi-
menter may desire to determine the form of the
equation tﬂr&t best represents his data, without
committing bimself to any specific preconceived
equation such as (1). In that case, which consti-
tuies o problem of the second category, lhe choice
of n smtable equation mey present considerable
difficuities. There exist few, i any, puidelines to
assist one tn the selection, and trisl and error is the
orly way by which n particular equation is finally

chosen. A widelr used statistical procedure Ffor
fitting curves and surfaces iz the method of least
aguarez. Application of this method requires that
some specific functional formn be apreed upon prisr
to the httmyg procesa, This process serves to estimate
the unknown parameters and to evaluate the ade-
quacy of the fit in terms of the smallness of the
residuals. There iz no nssorance, by this method,
that 2 much better fit might not be achieved by
an entiraly different functional form.  Alse, if the
fit turns out to be inadequate, the method of least
squares yields little, If any, information regarding
the direction in which ope ought to search for a more
apf-mgri&tﬁ model.

n this paper, the empirical fitting of u family of
curves is attacked in a systematic way. Mabhe-
matical ex jons are used involving functions
that depend each on one variable only. The nature
of each of these functions s left entirely open in the
initial fitting process, snd the adequacy of the At is
judped without Laving to specify the nature of thesa
%unntiﬂns, Thus, one need not estimate the values
Ef any parameters before judging the sucress of the

t.

The specific examples presented in this paper are
used only to illustrate tha mathematical approach
and net to propose alternative equation of state,
either for rubber or for ethylene.

2. Generalized Model

For the sake of clarity, we ghall discuss the problem
first in terms of eq (1). Rewriting eq (1)jas:

()T

we see that for any particular value of ¥, it repre-
sents simply a linear relationship between p and T,

(2)
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Thus, for any value of V, a plot can be made of g
versug T, and a stepight line fitted to the plotte
%'rints. Ii dats are available for different values of
" this method will result in & collection of straight
lines, ome for each wvalue of V. Tha slope of the
straight line, corresponding to any given value of 7/,

. R . . —f .
Bp— and the intercept s V= Thua, by studying

the telationship betwesn the experimentally deter-
minad slopes snd the corresponding values of V, ona
can obtain an estimate of the parameterd, Similarly,
from the intercepts an estimate of ¢ ¢an be chtained.

50 far, no new technique of analysis has been intro-
duced, and the dure i= entirely contingent on
the lingavity of p1in terms of T.  Nota, however, that
in fittingr each straleht line, no usa haa been made
of the fact that the jﬁpﬁ depends on ¥ in sccordance

with the function % or that the intercept is in-

versely proportional to V%, Itia only in the esiima-
tion of fand ¢ that consideration has been given to
thesa fncta,

Suppose, now, that the axperimenter i= not com-
mitied to eq (2} a8 the on ;ﬁ:]ﬁaiblﬂ representation
of hiz datn, or that, in fact, he knows thig equation to
be unsatisfactory for that purpose. Tt is then possi-
ble to suggest an immediate generalization of eq (2},
far less restrictive than this equation, that may he
more adequate as a reprezentation of the data.

Wo note thet eq (2 belongs to the general class.

p=fV}y+g (V}MT} (3)

where f and ¢ are two diztinet functions of volume
oniy, while & i3 & function of tempersture only.
Equation (3} i more general than eq {2} in that no
asgumptiong are made regarding the form of the lyne-
ticne f, g, and & For exswple, A{T) may be a
uadratic. or an exponential, or any other desired
tion of I. Nor is it necessary to assuyme that
FV) sod (V) obey the functional forme FF and
73 requited by Van der Waal's equation. Any
depandence of % on T and of f and g on Vis admissible
in the general formulation of eq (3).

We will adopt a3 our generalized model that repre-
sentad by eq (3). First we describe a method lor
fitting the model represented hy e%?;} and for avalu-
ating the adequacy of the fit. n we illuatrate
the uselulness of this model by applying it to two sets
of experimental data.

3. Analysie of the (Generalized Model

Let the deia ba in the form of & rectangular array,
in which each row is aesociated with a particnlar
value of ¥, and each column with a particular value
of T. Each cell of the array then contains the value
of pressure cnrrespﬂndinﬁ to the volume and temper-
ature values represented by the row and column
intersecting in that eell. Such an arrangement is
shown in tabla 1.

TapLs 1.  Schematie of p-V-T dala
Toamperntee
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The msin difficulty in fitting eq (3) lies in our
ienorance of the function A{T). Indeed, ag (3) ex-
E:eaaes for andy iven value of V, a linear relation

tween @ an h%li"). It .&EIT} is known for each T
the straight line corresponding to esch value of 17
can at once he plotted and the nature of the fanctions
FV) and g{V) ean then be detsrmined by studying
the slopes and intercepts of the lines as functions of
V. Let us note, however, that & similar analysis can
ba made as soon a8 we have a et of valuce linearly
related to M{T). ¥or i afunetion H(T) is defined by

H(T)=a+84(T} {4)
¢y {2 con bo written

ik p=AV)+ BV H(T) (5)

AW>=ﬂm—§ oV (6a)

5@)=4) (6k)

Then eq {5} also represents, as does &g (3), a linear
relationship between p and H{7) for cach value of
V. If H{T) iz known, the functions A(V) and B(V)
may than determined from the linear fits of p
versus H( T}, for different valoes of 1. Now when
AT is unkoown, there exigt nevertheless inan
funetions H(T) the values of which can be inferra
from the dats for all T values represented in the
table. One of thess hunctions is given by the
oolumn averages By of table 1. This follows at once
hy averaging both members of cg (3} over all rows,
for any given valna of 7

Pr=7+oh{T). (M)

~

This funetion belongs indeed to the class of H(T) -

defined by eq (4). For reasons of stotistical con-
venience, a preferable choiee is piven by

Cr=Fr—p

@ ,



Wliers E is the grand averags of all Fr valucs in the

table. Whan ETJ is melected to be &, as defined
by eq (8), we will refer te the corres Ild.i;l;lg repre-

sentation ’b;;r o (5) as the “standard form.” Thus,
the standard form ia given by :

p=A,+ B Cr {93
where p 13 defined by (3) and:
A=) -L22 g9) (102}

Bv=i§®- (10b}

From (10b) it follows that the average of By over
all rows is equal to unity. On the other hand, eq
{%) shows that the ave.raﬁe of the £ over all col-
uong iz equal to zero, Thua:

B=1 and £=0, {11)
It is essily verified that these two conditions are
neceazary and sufficient for assuring that the repre-
gentation it in the standard fortn. Therefore, a
function of two variahles, a3 represented in table 1,
ma¥ he approximated, in the form of eg (%), by three
singie—variable functions, The function Or of ten-
perature fs first comnputed from the column averages
of table 1 by aq (8). A linear fiv of each row of the
table versus Oy then gives the values of the functions
Ay and By as the intercepta and the slopes of the
fitted hines.

An wnalytical formyla for the function of two
variables may now be obtained by fitting empirieal
formulas to the curves O versus T, A, versus ¥,
and By versus V.,

4, Statstical Modal

So far we have not considered errors of measure-
ment. Let us now asswne that the experiment has
been conducted i such a way that V and T are
controlled and p 18 & measurement. subject to experi-
mental error. Then eq (3} hecomes:

P=f(V)+g{V)A(T) 1+

where ¢ is a random error of zero expectation. For

{3a)

; E:;eﬁter generality, the Brat member in eq (32) can

repleced by any suitable function of p.  In work
dealing with equaticns of state, such as pressure-
volure-temperature relationships, it is cuatomary to
studﬁ' the quentity pV. Replacing » by EV in the
iefi-hand sida of (3a) would visibly not change the
functional nature of the right-hand side of this rela-

' wtion nnd it would generally reault in greater homaoge-
© neity io the varisnee of the error term. Representing

the measured quantity, or any appropriate function
of it {as in thia casa »V) by Z. -, we have the
general relation

Zp,r=f(V)+g(V}h(T) e {12}

which can ba wratten in the standard forin:

zr,r=ﬁr+3vgr+i {13}
where B—1 and &=0. Specifically, 'y is defined hy
CpmZr—Z (14)

where Zy is the column sverage for column T and Z
the grand average in table 1, the cell entriss of which
are Zy 7. In regard to the errors, ¢, we will nssume
that they are normally and indspendently distributed
constituting & sample from & normal population of
gero mean, snd variance equal to o2 _

Under these sssumptions, the values Zv ¢ and 2y
(from which the Cr are calculaied) are no longer
statistically independent, nor are Z; and Cr in-
dependent. Tt has, howaver, been shown [1]' that
the following analysic is not invalidated by this
circumstance.

5. Statistical Analysis

Denote by m the number of rows of table 1, and by
# the number of its columns. For each row, a straighy
line is fitted to the set of points {Z, €} yeing the ususl
method of linear regression. This yiclds the esti-

nates,
zvl T
é‘;gﬂ (15)
@Zw, rCr

8

r=—'§—ﬁ (16}

%nd an estimate of the verinnce ebout the ragression
ine:

(A — A+ B OO

o= —
Binee the verisnce of <1z azsumed to be the same for
all valuea of V, the m estimates givan by eq (17)
for the #m values of ¥V may be pooled. How this is to
be done will bs shown in the discussion on the
analysis of warisnca. WNota, however, that an

(17

inspection of the m values of e’{e} is of considerable
interest, especially for the defaction of trends
related to the magnitude of V. A pooled volua s
megningful only in the absence of such trenda.

From (17}, or from & pooled vn]ﬁe of f}{f}, estimales

of the standard errors of HV and %V may be obtained
by the uzual fortnules.

1 Fiypares in brarkels Indbosle the Hteraturs raferenoss gt Lbe end of this pape




6. Case of Concurrence

Among the many possibilities for the atrueture of
& family of curves, two special cases deserve partic-
ular atéention. The first concerns a furnily of ‘‘par-
allel” curves. In this case, the straight lines result-
ing from the application of the method described in
this paper will also be parallel. Their elopes are then
mdependent of ¥ and all equal to unity so that the
mode! reduces to the “additive” type.

7y omApt Optbe=Adpt Zp—Z+e (18

The secomd epecial case ig that in which all the
curves of the family pass through a comunon point.
We denote this situation as the “concurrent” caze,
When the curves are concurrent, then so nre the
straight lines resulting from our analysis. Now a
neceasary and sufficient condition for o collection of
straipht lines of the type

Z=1(V) +4(VIMT) (19)

to roneur, is that 2 linear relation exist between f{17}
and {11, Forif (), £ are the coordinates of the
common peint, the fellowing identity 1nust hold for

all T7;
Zo=J(V) +g(PIB(T)

FIVI=Z,— A To}lg (V). (20)

This equation expresses o linear relation between f{T7)
and g{ ¥, since £, and A(7}} are numerical constants.
Conversely, if this linear relation holds, then the
entire set of straight lines prases through the point
[R{T5), Zyl, and hance is conowrrent.

The itnportancea of the coneurrent model iz that in
it, tha algebraic expression of the structure of the
family of eurvea becomes quite simph]a. Indeed, re-
platin%in aq (19}, the quantity {1} by its expression
given by eq (20), we obtain

Z=[Z—h(Thg{V)]1+g(VIR(T)

Z—Zy=g(V){R(T)—h{Ty)). (21}

Thue, in the case of concurrenca, the neasured quan-
tity is emaut-ial};r the product of lwo functions, the
first involving 1 only, and the second only T,

We will show in the next section how the con-
currence of & family of eurves is revealed by the
analysis of variance.

or

Or

7. Analyzs of Variance

The theoretical basia of the analysis of variance s
diseussed in reference [1]. The analysiz iz busad on
the atandard form of the model, as given by eq {13},
which ean be rewmitten ns

zv.rzﬂr‘l‘gr‘]‘(ﬂv—ﬂcr-]‘!- (22}

To each of the four terms in thiz expression cor-
responds a sum of squares, computed as indicated
in table 2a.

Tabrk 2. Anglysis of raricnce

‘Tarm in Dlegroar of Burn of 3guesres. M ran squers

e (22) Imedom
Av m-1 L P W 2
r n=1 Afe =M Iy %
(Be—10r | m—t 88 e m Tyl v~ 118 r ey ifj"f

. s a8,
(m—1ita—2 2H, = EpEr[ 2y r—{.lr-i—!iﬂ'-r]]' I'.,M_—].].I:ﬂ_\:i:-l.

It is seen from table 2a that the usual interaction
term is bhere partitioned into two parts, {(B-—1)Cr
end e« Thus, only (m—1}{rn—2} degrees of freedom
are avallable for random error, the remeining {(m—1)
being allocated to the important “slope coffect.’”
The anulysis thus provides sn apswer o the ques-
tion of how the m estimates given by eq (17) are to
be pooled: the total number of degrees of freedom
for the pooled estimate is (m—1}(n—2) (rather than
mi{n—2), becuuse of the correlation between the m
separate estimates). The m—1 degrees of freedom
corvesponding te the term {Hy—1)C; provide a
means for testing the “parallelism” of the family of

corves. In the case of Nelism the mean square
corresponding to the {B,—1)C% term will not be
pignificantly larger than the ¢ mean aquare und the

model undeciying the set of curves bacomes tha
simple additive model of ordivary analysis of
VACILTICE.

Tha existence of o point of eoncurrence is tested
by & {urther partitioning of the interaction sum of
squares. The test iz based ot the theorem proved
in the preceding section that o necessary and suff-
cient condition of concurrence is the existence of an
exact linear relation between f{17) and g(V). In view
of eqs (10a) and {10b}, this iinplies a linear relation
between 4, snd 2, Buat then the correlation be-
tween thase two quantities is unity. Cnnseq{uentlj,r,
the test for concurrence is carried out as lollows.
First, compute the correlation coefficient rig be-

twaen the quantities .&r and ﬁr, Then partition
the {By_;)Cr ferm as shown in table 2b, Jf the
mean squsre for coneurtence i3 sipnificant with
respect to thet for nonconcwrence end the latier is
cwpparable in magnitude to the ¢ mean square,
there ie good evidence that the family of curves
pass throuzh a oomnmnApuint. (H courae, one can
alzo plot the m points (A, ﬁv}: if an exnct straipht
line {to within € error) results, theve ia conenrrence
in the family of curves.
TakiB 2b. Texf for coneturresce
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B. Further Generalization of the Model

Suppose that application of the proposed meihed
to & particulir one-paramater family of curves hae
been unsuccessful. In terms of eq %YIE}, thiz would
ke shown by the failure i3 obtan straight-line
relationehipa when Zr » ia plotted wversus €%, for
particular values of 7. A natural extension of the
procedure is to try a madel of the type

Ly, o=y + B O+ DpCh (23)

that is, to fit a qoadratie, rather than & linear rels-
tion, to 7 g8 a function of the colomn averages. I
necessary, & pelynomial of degree higher than two can
ba tried. Esxperience shows that the quadratie
model represented by eq (23 may give very satis-
factory results where the simpler linear model fails.
For computations]l convenience, it i8 often adven-
tapecus to make the quadratic fit by the method of
orthogonal polynomials in 0y, despite the fact that
the {% can, of courss, not be expected to be equi-
digtant. The relative advaniage of using orthogonal
polynomials increases with the number of rows in
the table, singa all rows are fitted versus a constant
pat of pﬂfynumiala in 7. For the quadratic model,
the method of orthogonal poivnomiale yields the
equation

-Zv, = A vt BVFGT-l'-DV[ Q(CT) ]

whare A, and By and £ are identical with the cor-
reaponding quaniities wsed in the linear fit, and
HCy) is defined by:

oF 3 .
Q{Gﬂ:ﬂﬂr—(g—ﬂ) G"_(;T) (25)

where % i the number of values of T {number of
columns). The estimate of I}y is given by

225, QORI
-
b F—__gswwﬂr -

(24)

(26}

The improvement of the quadretic fit over the lineay
one can be assessed hy the emresponding reduction
in the swn of syuares in the anelysis of varisnce.
Denoting the reduction in the =wn of squeres due
to the quadratic terrn by 855, we have:

$8,= (DN AUCHR

The corresponding number of depraes of freadom is
m—1, where m represenis the nurtuber of ¥V values
{number of rows}.

9, Application to the Compression of
Vulcanized Rubber

The data in table 3 are taken {rom » study of the
compreszion of natural yubber<nliur vuleanizates

(27)

[2]. Tabulated are specific volume measurements
tor pressure values ranging from 1 to 10,000 stm
over & temperature range extending from 20 to B0
®C. _Tha snalysis wna made using the pﬁﬁmm for
the TBM 7090 computer, to be desecri in tha
last section. The avalysia of varianes iz shown in
table 4. This anslysis corresponds to a fit of the
dats by the empirical formula

V=A,+BCrte {28)

where V iz the measured specific voluma, A, and
B, are two functions of pressure, and Cr is a fune-
tion of temparature, Tha eymrhol « represents an
Herroc-term,”’ including the effect of experimental
error 45 well as thai of any inadequacy of eq (28)
to represent the data. 1t is seen that the standard
deviation corresponding to this error term is 0.00094.
Since the values of specific volume are nll of the
order of 0.35, the coefficient of wariation of the
error term is abont 0.1]1 percent.

TasLe 3. Specific volume of rabber
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The vulues of A,, By, and ¢ are listed in table 5.
Their relation to pressere snd tempserature are
shown o figures 1, 2, and 3. It is mteresting to
compare the resulte of this anslysiz with these of
the ponventionsl analysie of variance for a two-way
tshie. In such en enalysiz, the efect of ‘‘elopes"
would not hava bean separated from that of random
interaction. Congequently, the trend showm in
ﬁgum 2 would have been ignored; i.e., the curve in
this figure would have been replaced by a hori-
zontal etraight line. The “error-term” would have
been inflated by the trend of figure 2 and would have
vielded a mean square of 12.37X(10"" (the pooled
mean square for the legt two terms in table 4)
corresponding o a atandord dewiation of error of
0.0035, and & coefficient of variation of roughly
0.4 percent.
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Figuer 3. Compression qf valfcanized rubber, parameter O,

By means of fipures 1, 2, and 3, the effects of
Eressurn and tramaqerature on specific volume have

een quantitatively separated. Figures 1 and 2
represent the effect of pressure; by fitting empirical
eurves to thesa graphs, isotherms can be obtained
for each of the temperatures included in the study.
Figure 3 represents the effect of temperature, It
exhibits & ible discontinuity of slope which, if
real. woul
transition.”

In the next section we will diseuss another appli-
cation, for which an analytic expression \ITI.LF be
dexrived to represent the data.

10. Application to the Inctherms of Ethylene

The data for this illuztration sre taken from a
publizhed study of the irotherms of ethylene [2], for
ternperatures between 0 and 150 °C and pressures
ur to 3,000 atme. The dats for 0 °C were incom-
plete. A complete rectangulur srray could be ex-
tracted from the dats, covering 6 valuea of tempeara-
ture (columns), and 40 values of densit{ (rows).
However, in order to demonstrate the capabilities of
tha pn;poae-d fitting process, only 13 densitics were
selected from this set. These data are shown in
table 6; they were analyzed by the IBM 7000 pro-

m. An exsmination of the residusls revesled,
owaver, & merked increasa in variance with an in-
crease in density. Therefore, the analysis was re-
peated, after “weoighting” the rows, representing
dengzitics, by an appropriate fector. This “weighting
by rows" is & simple procedure. Let

ke interprated ag 8 so-callad f'plase

Z=pV=d;+ BiCrt+enr (29)
an¢ let the variance ol 4, he given by
Vi = (30)

284




L} ]

\\

-t

Then, multiplying eq (20) by +/w, we have:
T (e Zer) = (Ve dd HVwe B Or - {(Votata, o)

TanLe &. Fgualion of slale for ethylens
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Denoting (yug{Z,r) by Z} » we obtain

zr_r-:A:‘f"B:gr'{'f:.f (31
whare
Aj=+oaAs (320)
Bi=+aB, (32b)
and
Vet 1) = f-‘mﬁ. (23)

Thus, ag (31} now represents & fanily of orves with
constant error-variance; the O nre redefined in
terms of the 2%, and A, and B, are computed from
AZX and B using eqa {32).

In the present cass, the weights «; were chosen in
accordance with the relation

1
w"u_u=E

[

{34)

where A i3 of course simply the avarage of all pV
veluea in the row corresponding to density . 1t
followe from this cholee and eq (32a), that the
eetimate of A¥ is equal to unity for all values of .

Equaticn (31} was fitted to the dats sod gave =
coefficient of variation of 0.3 pereent. Since the
data are believed to have n better precision than
13 indicated by thiz coefficient of variation, the fit-
ting process was repeated, using the quadratie model ;

Zi, = A+ BECH- DO} €% 2
where fNCr) is defined by eq {25) and IX is esti-

mated by & formula simi In terms

{33)

pimilar to eq (26},
of the unweighted dnta, the coefficient of the
quadratic term iz 1), where

Di=va; Dy, (32c)

Tha analysis of variance is given in table 7. It
should be noted that the latter is in terms of the
weighted values, in agcordance with eq {315) Thus,
the residual wariance i o messure of Tie*), not
Vie). Furthermore, because Ay=1 for all &, tha
mean eqiare corresponding to this term Iz zero.
From eqg (30) and (33) we infer that:

Tpr = b g iy

which, in view of 2q (34) becomes

o=t (36)
A
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Thus, v., is mlﬁl;lg ual to the coefficient of varia-
tion of pT. the analysis of variance it is
peen that thiz coefficient of variation is equsal to
approximetely 0.3 percent using the simple model
DF the type of eq {13), and that 1t iz reduced to
about, 0.07 percent when tha more compliceted model
involving a tertn in CF is used. This model can be

written
zn'. r=Aa+BaGr +Dd[ Q{ﬂr}]+5

Zo y=Ag+ BolCr+ D (e, (37)

The values of A; B, I);and €'p resulting [rom the
analysle are given in table 8. ) _
The analysis could be terminated at this point.
Using table 8 and eq {37}, a value of Z;p can be
computed for any value of d and any wvalue of T
within the rangea of these variables covered by the
data. This can be done by numerical mterpolation
carried out on the junctions Aj, Bi, Iy, and Cr.

or
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To obtain a complete empirical representation of
the data, one further step is required. The quantities
Ay, By, and Dy must be expressed s= calculable func-
tiens of the depaiiy o, and O a8 o caloulnble function
of the temperature T. Thia waa dona by fitting
polymomial expressions to each of these functions,
uzing the date mn table 8.  In particular, the quantity
' was satighnetorily fitted by

=ty te T4 T5

A reduction in the overall nuraber of coefficients is
achieved by introducing the quantity

gryCr—ts_ T+ 1 (38)

)

Then, as csn readily be verified, eq (37) can be
written in the form

Zy v=A¢+ By O+ D (7).,

It was found that satisfactory fits were obtained by
using a fourth-degres polynomnial for D and fifth-
degrees polynomials for A/ and 7. The coefficients
of the fitted polynomials are listed in table 4.

(39)
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data used for the fit constituted a eelection of 13
densities from a total available set of 40 densitics,
Valnes of 17 wera now caleulated for all six tempera-
tares and the followine additional densities: 111,849,
153.349, 221 .48, 245.75, 310.08, 35543, and 456.85.
Thaz lest value is outside the range ecoverad by the
fit and involves therefore an extrapolation process.
The remsining six densitiea involve only interpola-
tion. Thus, the fitted surfacn was tested for 42
individual values by interpolation or extrapolation.
The results showed that for 35 of these 42 values,
the difference “observed minus fitted " was loss than
0.5 porcent of the obzerved value. All but three of
these differances were smaller than 1 percent of the
observed wvalues, The largest difference wes equal
to 1.21 porceot of the obscrved value, Thus, the
valuga obtained by interpolation are of the same
order of precision as those directly fitted. This
appesrs to be penerally true for the procedure pro-
pacd in this paper, provided that the fits used for
the single-variabla functions A, B, ©, and ¥ gre gll
of aufficient. acouracy.
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wFog A", &%, pnrl B¢ tha polynomlods aee in tecms of the densdd
Led ta the

the polynomial is in leroes of Lhe tamperaturs T 1he snuatlon
dmiarv_ltJJ+IyiclJ+ !}H:’cr':lj1

Uzing these functions, “caleculated” wvalues (de-

noted as 2.,, ) &re obtained for £, r according o tha
equation

By r=AY 3 By O+ Dy

-~ F .
in which A", B, ﬁ”, ADG 7 are given hg the
polynomiale whose coelficients are listed in table 8,

o

Values of £, » for the thirtesn densities and six tem-
peratiures are given in table 10, A comparison of
theze valuea with those of table 8 showe that 90 per-
cent of the fitted values apgree with the obzerved data
to within 0.5 percent or better, and that of the Te-
maining ones, all but two agres to within 1 percent.
Tha largest relutive deviation 1= 1.23 pereent.

The fitting procodure has therefore been very
succesaful for these data. Since all the data are
fittad by u single algebraic expresgion, interpolation
for aither pressures or temperatures not used in the
fit should be accurate. To test this pomnt, cq (40)
was used for interpolation at densities not used in
the fitting procedure. It may be recalled that the

{40}

[+ is interesting to compare tho results of this fit
with the equally empirical fitting procesas used by
Michels and Geldernmans [2]. These anlhors fitted
each isotherm individuslly, requiring s total of 42
coefficients for the six jzotherns, ss contrasted with
the 18 coefficients {(listed in table ¥) required by the
present procedurs. The residuals obtained by
Michela and Geldermans are somewhat smaller than
those obtained by the present fit. On the other
hand, the glmcedure used in this paper leads to &
single slgebraic expression to fit the entire surface.
Diiferantiation iz possible both with respect to
dengity and temperature wherass Michels and
Geldermans' fit does not allow for differentiation
with respect to ternperatnre.

11. Computer Program

A program has been written to fit data to the
linear or quadratic models on the IBM 7080 com-
puter. The program was written in Fortran. The
original data, fitted parameters, residuals resulting
from the fittinr procedures, and analysis of variance
are printed. Kow or column weighting may be usad.

-
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Provision is alao made for transforming the data, for
combining rows or columns of the data, for applying
apecified corrections to individual data, for reversing
rows and columns of the data, and for omittin
specified rows and columns from the original set o
data. The rows and eolwnos of the data are
identified by alphabetical or numerical labels 20 the
output is easily interpreted without any coding.

12 Further Generalizations

Meoasurements depandent on two variables are not
always given in the form of a ecomplete two-way
array, such as table 1. It is often possible, in sue
cases, 10 ponstruct such a table by mterpolation or
curve fitting proceduras earried out on subsats of the
data within which one of the two variables is held
constant.

The presentation in thiz paper has been in terms
of one-parameter families of curves, The mathod
can, however, be used for the analysie of families of
ourves invalving more than one parameter.  Applica-
tinns of this type are now being mada,

13. Summary

A systemaiic method hae been presented for the
empirical fitting of data depending on two variables.
Eaaantia]E, tha method reduces the fitting of sur-
Taces to that of funetions of singla variablea. In the
basic model these single-variable funetions are emn-
pletely arbitrary, allowing for great fledbility in
app]ﬂ]ng the method. The adequacy of the model
cah ba avaluated without heving to introduce alge-
braic ressions for the single-vurrable functions.
Te obtain & comnplete algebraic reprogentation of the
surface, it is then marely necessary to fit the single-
variable [enetions by any appropriate method.

In certain cases it ay ba desirable to omit this
last step, and still retain & workable madel which

will express the surfaca in terms of tabulated fune-
tiona of single-variables. In that cese, numerical
interpolation methods must be applied te these
tabulated values,

The first exampie used to illustrate the method
deals wath the effects of pressure and ternperature on
the specific volwne of certain types of rubber. A
quantitative separation of these effects was ohtained
in tarms of tabulated values of three single-variabla
functions. The fit by means of these functions was
within experimental arror,

A second example concerned the equation of stats
of ethylene. The entire sat. of dats wes represented
bry n single algebraic sxpression and & good fit was
obtained. Eighteen coeflicients were required by
thiz fit, as against 42 coefficients necessituted by the
procedure cotrunenly used for data of this type.

The statistical analysis required for the applica-
tion of the proposed procedure is presented. In
addition to providing estitna tes for the paraineters of
tlte model, the analysis allows for testing the sig-
nificance of the pertinant efacts.
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